- 📅 2025-02-03T08:53:53.110Z
- 👁️ 52 katselukertaa
- 🔓 Julkinen
<bos>how do I use AutoModelForCausalLM?
The `AutoModelForCausalLM` class from Hugging Face's `transformers` library is used to create a causal language model. Here's a step-by-step guide on how to use it:
1. **Install the Transformers library:**
```bash
pip install transformers
```
2. **Import the necessary modules:**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
```
3. **Load a pre-trained model:**
You can choose from a variety of pre-trained models available in the Hugging Face Model Hub. For example, to load the GPT-2 model:
```python
model_name = "gpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
4. **Prepare your input text:**
Tokenize your input text using the tokenizer:
```python
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
```
5. **Generate text:**
Use the model to generate text based on the input:
```python
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
6. **Fine-tune the model (optional):**
If you want to fine-tune the model on your own dataset, you can use the `Trainer` class from the `transformers` library.
Here's a complete example:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load pre-trained model and tokenizer
model_name = "gpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Prepare input text
input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate text
output = model.generate(input_ids, max_length=50, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
```
This code will generate text based on the input text "Once upon a time". You can adjust the `max_length` and `num_return_sequences` parameters to control the length and number of generated outputs.
Remember to refer to the official Hugging Face documentation for more details and advanced usage