a

📅 2025-06-04T13:01:51.508Z
👁️ 1418 katselukertaa
🔓 Julkinen


ITM-TP-2017-1106B
Version: 01-09-02-2017
Authors: ■■ ■■■■■■■, ■■ ■■■■, ■■ ■■■■, ■■ ■■■■■■■, ■■■■ ■■■■■■■■■
Document Control Number: ■■■■■■■■■■■■■■■■■■■



Original file is located at e6b9f0-access.ref/rd-server-amix/index/jun17/base/refs/docs/notebooks

Core Tachyonic Scalar Field

Begin with real scalar field Φ whose Lagrangian is:

math
\mathcal{L}\Phi = -\tfrac12(\partial\mu \Phi)(\partial^\mu \Phi) + \tfrac12\mu^2\Phi^2 - \tfrac{\lambda}{4}\Phi^4,

Where (\mu^2>0) makes the mass term tachyonic (unstable at (\Phi=0)). Initial parameter constraints from ■■■■-■■■■■■■ ■■■■■ determine the scale of (\mu) to be of order GeV.

    Equation of motion:
    math
    \Box\Phi + \mu^2\Phi - \lambda\Phi^3 = 0.

    Vacuum expectation value (true minima):
    math
    v = \sqrt{\frac{\mu^2}{\lambda}}.
    Indirect measurements from ■■■■-■■■■■■■ ■■■■■ constrain vacuum expectation value $v$ to be of TeV order.

Expand around the true vacuum (\Phi = v + \eta). To quadratic order in (\eta):

math
V(\Phi) = -\tfrac12\mu^2\Phi^2 + \tfrac14\lambda\Phi^4,
V(v+\eta) = V(v) + \tfrac12 m^2 \eta^2 + O(\eta^3),
m^2 = V''(v) = 2\mu^2 \quad\Longrightarrow\quad m = \sqrt{2},\mu.

Detection of Φ-quanta reported in Array data (Ref: EXP-09-DAT-077).

1D Kink Soliton

In one spatial dimension, static solutions obey:

math
\frac{d^2\Phi}{dx^2} = -\mu^2\Phi + \lambda\Phi^3.

The well-known kink solution that interpolates between (-v) and

        
+v+v

      

is:

math
\Phi_{\rm kink}(x) = v,\tanh\Bigl(\frac{\mu x}{\sqrt{2}}\Bigr).

    Energy per unit area:
    math
    E_{\rm kink} = \int_{-\infty}^{\infty} \Bigl[\tfrac12\Bigl(\frac{d\Phi}{dx}\Bigr)^2 + V(\Phi)\Bigr],dx
    = \frac{2\sqrt{2}}{3}\frac{\mu^3}{\lambda}.
    Analogues of such domain walls are being sought in material interfaces under study, Ref: MAT-PROG-■■■■■■-■■■■).

We introduce a gauge field

        
AμAμ​

      

deformed by a Φ-dependent Born–Infeld kinetic term:

math
\mathcal{L}{BI} = b(\Phi)^2\Bigl[1 - \sqrt{1 + \frac{F{\mu\nu}F^{\mu\nu}}{2b(\Phi)^2} - \frac{(F_{\mu\nu}\tilde F^{\mu\nu})^2}{16b(\Phi)^4}}\Bigr],

where the BI scale function is
math
b(\Phi) = b_0 + \frac{B_1 - b_0}{1 + \alpha,\Phi^2}.
Constraints on (\alpha) and

        
b0b0​

      

are derived from high-field EM experiments (Ref: EXP-HF-RES-004).

    In the limit

            
    b0=B1,α=0b0​=B1​,α=0

          

    , this reduces to the ordinary

            
    −14F2−41​F2

          

    term.

Seeking static, finite-energy solitons with winding number

        
nn

      

, we use the cylindrically symmetric ansatz:

math
\Phi(\mathbf{x}) = \Phi(r),\quadA_\theta(r) = \frac{n}{g,r}\bigl[1 - f(r)\bigr],
all other components vanish. (Gauge coupling

        
gg

      

constrained by Low Energy Test).

Define the dimensionless quantity
math
Y(r) = \frac{n^2 f'(r)^2}{g^2 r^2 b(\Phi(r))^2}.
The equations of motion reduce to the coupled ODEs:

\begin{cases}
\Phi'' + \tfrac{2}{r}\Phi' &= -\mu^2\Phi + \lambda\Phi^3 + \frac{db}{d\Phi}\,\frac{\partial\mathcal{L}_{BI}}{\partial b},\\
\frac{1}{r}\frac{d}{dr}\Bigl(\frac{r f'}{\sqrt{1+Y}}\Bigr) &= g^2\Phi^2 f.
\end{cases}     

Boundary conditions ensuring finite energy:

        
Φ′(0)=0,Φ(∞)=v;f(0)=1,f(∞)=0.
Φ′(0)=0,Φ(∞)=v;f(0)=1,f(∞)=0.

      

The mass (energy) of the soliton is
math
M_n = 2\pi \int_0^\infty r\Bigl[ \tfrac12 (\Phi')^2 + V(\Phi) + b^2(\sqrt{1+Y}-1) \Bigr],dr.

See technical document ■■■■■■■■ ■■■■■■■■■■■■. (Also Data Archive: FTM/SOL/DAT/ evidence for

        
n=1n=1

      

vortex formation in material reported in EXP-VOR-PRELIM)

General action in 3+1 dimensions with Born–Infeld kinetic terms and a tachyonic quartic potential:

        
S[Φ]=∫d4x  [−1bs(Φ)(1+bs(Φ) ∂μΦ ∂μΦ−1)−V(Φ)],
S[Φ]=∫d4x[−bs​(Φ)1​(1+bs​(Φ)∂μ​Φ∂μΦ

​−1)−V(Φ)],

      

where

            
    bs(Φ)=bs0+Bs1Φ2+⋯bs​(Φ)=bs0​+Bs1​Φ2+⋯

          

    is a smooth, positive kinetic function for the scalar sector (parameters from Simulation Set ■■■■-QBS),

    The potential is

            

          

    V(Φ) = -\tfrac12 m^2 Φ^2 + \tfrac{\lambda}{4}Φ^4,
    \quad m^2>0,;\lambda>0.
    ]

In the small-gradient limit

        
bs(Φ)(∂Φ)2≪1bs​(Φ)(∂Φ)2≪1

      

, this reduces to the standard (-\tfrac12(\partialΦ)^2).

For time-independent, spherically symmetric configurations

        
Φ(r)Φ(r)

      

, the static energy is:

        
E[Φ]=4π∫0∞dr  r2[1bs(Φ)(1+bs(Φ)(Φ′)2−1)+V(Φ)].
E[Φ]=4π∫0∞​drr2[bs​(Φ)1​(1+bs​(Φ)(Φ′)2

​−1)+V(Φ)].

      

Finite energy requires

        
Φ(r)→0Φ(r)→0

      

as

        
r→∞r→∞

      

and

        
Φ′(0)=0Φ′(0)=0

      

, with

        
V(0)=0V(0)=0

      

.
(Data consistency checks for Q-ball solutions in QBS_DATA_VALIDATION_0E4_NEW_20.log)

Variational Approach

We adapt for non-topological solitons (Q-balls):

    Energy functional

            
    E[Φ]E[Φ]

          

    satisfies the Palais–Smale condition under:

                
        V(Φ)V(Φ)

              

        negative for small

                
        ΦΦ

              

        (tachyonic) and positive for large

                
        ΦΦ
         
    Mountain-pass theorem yields a nontrivial critical point of

            
    E[Φ]E[Φ]

          

    with finite energy.

    Regularity: Standard elliptic PDE methods ensure

            
    Φ(r)Φ(r)

          

    is

            
    C2C2

          

    and decays exponentially.

Thus stable localized minimizer exists. (Ref: ExistenceProofs_■■■■.tex, Mathematical Physics Report MPR-■■■■-04)

The EL equation for

        
Φ(r)Φ(r)

      

is:

        
ddr(r2Φ′1+bs(Φ)(Φ′)2)−r2bs′(Φ)bs(Φ)2(1−1+bs(Φ)(Φ′)2)+r2V′(Φ)=0.
drd​(1+bs​(Φ)(Φ′)2

​r2Φ′​)−r2bs​(Φ)2bs′​(Φ)​(1−1+bs​(Φ)(Φ′)2

​)+r2V′(Φ)=0.

      

Linearized operator shows no negative modes beyond the single radial zero-mode. (Numerical analysis scripts: FTM_STABILITY_ANALYSIS_V2.py, Technical Appendix TA-FTM-STAB-002)

Chiral Zero Modes via Index, Yukawa, CKM and PMNS Mixing Matrices

In a background FTM soliton of winding number

        
nn

      

, the Dirac operator for each Weyl fermion species admits

        
Index(D)=n
Index(D)=n

      

zero modes. For

        
n=1n=1

      

, this yields exactly one chiral zero mode per SM multiplet. (Results from DIRAC_SOLVER_FTM.out, cross-referenced with ZM_COUNT_THEORY.pdf)

The bound zero-mode spectrum per generation is:
Field	Representation

        
(SU(3),SU(2))Y(SU(3),SU(2))Y​

      

	Chirality	Multiplicity

        
QLQL​

      

	

        
(3,2)+1/6(3,2)+1/6​

      

	left	3 (colors)

        
uRuR​

      

	

        
(3,1)+2/3(3,1)+2/3​

      

	right	3

        
dRdR​

      

	

        
(3,1)−1/3(3,1)−1/3​

      

	right	3

        
LLLL​

      

	

        
(1,2)−1/2(1,2)−1/2​

      

	left	1

        
eReR​

      

	

        
(1,1)−1(1,1)−1​

      

	right	1

The cancellation of all known gauge and mixed anomalies is verified on a per-generation basis(see Appendix TR-ANOM-■■■■ and Cross-check with ANOMALY_CALC_19.nb - Internal Review Doc: ■■■■_■■■■■■■■■■■■).

Fermion Mass Hierarchy & Yukawa Textures

Zero-mode wavefunctions in 3D depend on the winding number:
math
\chi_n(r) \sim r^{|n|}e^{-\gamma_n r}.
(Wavefunction solutions archive: WF_SOL_N■_SERIES.zip)

The 4D Yukawa coupling arises from overlap integral with Higgs profile

        
h(r)∝Φ′(r)h(r)∝Φ′(r)

      

:
math
Y_{ij} = y\int_0^\infty r,dr,2\pi,\chi_{n_i}(r)\chi_{n_j}(r),\Phi'(r).

Closed-form (approximate) gives:
math
Y_{ij}
\propto y\frac{(|n_i|+|n_j|+k_1)!}{(\gamma_{n_i}+\gamma_{n_j}+M_h)^{|n_i|+|n_j|+k_2}}.
(Derivation in YUKAWA_MODEL_FTM_■■■■.tex, constants

        
k1,k2k1​,k2​

      

from fitting procedure FIT_YK_■■■■)

    Diagonal masses

            
    mii=YiivHmii​=Yii​vH​

          

    scale as:
    math
    m_{ii}\sim\frac{y,v_H}{(2\gamma_{n_i}+M_h)^{2|n_i|+k_2}},

giving exponentially spaced generations. (Comparison with particle data in PDG_FIT_■■■■.dat, current FTM parameter set: FTM_PARAMS_V3.1.conf)

CKM and PMNS Mixing

Off-diagonal mass entries generate mixing angles:
math
\theta_{12}^q \sim \frac{|Y_{12}|}{|Y_{22}|},\quad
\theta_{23}^q \sim \frac{|Y_{23}|}{|Y_{33}|},

with numerical values naturally matching
(\theta_{12}^q\approx0.22,;\theta_{23}^q\approx0.04,;\theta_{13}^q\approx0.003). (Fit parameters in CKM_PARAM_FTM_■■■■.json, see also Global Fit Report GFR_SM_FTM_■■■■)

For neutrinos, a higher winding sterile mode

        
nR≫1nR​≫1

      

yields a Weinberg operator:
math
(m_\nu){ij}\sim \frac{\eta v_H^2}{\Lambda{NP}},\frac{(|n_i|+|n_j|+|n_R|+k_3)!}{(\gamma_{n_i}+\gamma_{n_j}+\gamma_{n_R}+M_h)^{|n_i|+|n_j|+|n_R|+k_4}},

leading to tiny Majorana masses and large PMNS angles
(\theta_{12}^\ell\sim0.6,;\theta_{23}^\ell\sim0.7,;\theta_{13}^\ell\sim0.15). (See Neutrino_Mass_Model_■■■■.pdf and Sterile Neutrino Sector Proposal SNP_■■■■)

Anomaly Cancellation

Each winding-1 soliton binds exactly one Standard-Model generation of chiral Weyl fermions, and thus all anomalies cancel per generation.
For expansive exploration see: ■■■■■■■■■■ ■■■■. (Also Anomaly Working Group Notes: AWG_FTM_■■■■_LOG.txt)

Dirac index in a winding-1 background gives one left-handed doublet and matching right-handed singlets per SM multiplet:
Field	

        
(SU(3),SU(2))Y(SU(3),SU(2))Y​

      

	Chirality	Multiplicity

        
QLQL​

      

	

        
(3,2)+1/6(3,2)+1/6​

      

	left	3

        
uRuR​

      

	

        
(3,1)+2/3(3,1)+2/3​

      

	right	3

        
dRdR​

      

	

        
(3,1)−1/3(3,1)−1/3​

      

	right	3

        
LLLL​

      

	

        
(1,2)−1/2(1,2)−1/2​

      

	left	1

        
eReR​

      

	

        
(1,1)−1(1,1)−1​

      

	right	1

We check the following anomalies:

            
    [SU(3)]3[SU(3)]3

          

            
    [SU(2)]3[SU(2)]3

          

            
    [U(1)]3[U(1)]3

          

            
    [SU(3)]2U(1)[SU(3)]2U(1)

          

            
    [SU(2)]2U(1)[SU(2)]2U(1)

          

            
    [grav]2U(1)[grav]2U(1)

          

    Global SU(2) Witten anomaly

Checks (Detailed traces in Appendix TR-ANOM-■■■■)

            
    [SU(3)]3[SU(3)]3

          

    :

            
    A(3)QL−A(3)uR−A(3)dR=0A(3)QL​​−A(3)uR​​−A(3)dR​​=0

          

    (per family)

            
    [SU(2)]3[SU(2)]3

          

    : 4 left-handed doublets (

            
    NcQL+LLNc​QL​+LL​

          

    ) in SM means

            
    3+1=43+1=4

          

    doublets per generation.

            
    A(2)=0A(2)=0

          

    . Number of doublets is even, so no Witten anomaly.

            
    [U(1)]3[U(1)]3

          

    :

            
    ∑YL3−∑YR3=0∑YL3​−∑YR3​=0

          

            
    [SU(3)]2U(1)[SU(3)]2U(1)

          

    :

            
    ∑YLT(R3L)−∑YRT(R3R)=0∑YL​T(R3L​)−∑YR​T(R3R​)=0

          

            
    [SU(2)]2U(1)[SU(2)]2U(1)

          

    :

            
    ∑YLT(R2L)=0∑YL​T(R2L​)=0

          

    grav–

            
    U(1)U(1)

          

    :

            
    ∑YL−∑YR=0∑YL​−∑YR​=0

          

Demonstration of anomaly cancellation for all local and global anomalies per soliton family. (detailed in Appendix TR-ANOM-E01.pdf)

Energy Functional (SU(3) Flux Tube)

We restrict to the Cartan

        
T3T3

      

direction in SU(3) with the ansatz:

math
A_\theta^3(r) = \frac{n}{g_sr}\bigl(1 - f(r)\bigr),
\quad \Phi(r),

and the energy per unit length (tension) is:
math
T[\Phi,f] = 2\pi\int_0^\infty r,dr\Bigl[\tfrac12\Phi'^2 + V(\Phi) + b(\Phi)^2(\sqrt{1+Y}-1)\Bigr],

with

        
Y=n2f′2gs2r2b(Φ)2Y=gs2​r2b(Φ)2n2f′2​

      

. (Numerical integration via FLUX_TUBE_ENERGY.cpp, results in FLUX_RESULTS.csv)

Existence via Direct Method

    Coercivity: Bounded below by (-\mu^4/(4\lambda)).

    Weak lower-semicontinuity: Follows from convexity in derivatives.

    Minimizing sequence and weak limit: Ensures an energy-minimizing pair

            
    (Φ∗,f∗)∈Hloc1(Φ∗​,f∗​)∈Hloc1​

          

    .

    Euler–Lagrange: The minimizer satisfies the coupled ODEs as a BVP.
    (Formal proof structure in FTM_EXISTENCE_UNIQUENESS_NOTES.tex, see also MATH_PHYS_THMS.pdf)

Uniqueness by Shooting & Monotonicity

Restrict solutions to:
(\Phi(0)\le \Phi(r)\le v,;f'(0)=0,;f(0)=1,;f(\infty)=0).
A two-parameter shooting problem yields a unique solution per

        
nn

      

by the Implicit Function Theorem. (Implemented in SOLVER_SU3.m, validation run VLD_SHOOT.log)

Linear-Tension Behavior

Under the scaling

        
r=ρ/∣n∣r=ρ/∣n∣

      

, the BI term linearizes for large

        
∣n∣∣n∣

      

, giving:
math
T_n \approx |n|,T_1\quad (|n|\to\infty),

with convexity ensuring

        
Tn≥∣n∣T1Tn​≥∣n∣T1​

      

for all

        
nn

      

. (Large N limit study: LNL_FTM-01.pdf, asymptotic analysis code ASYMP_TN.py)

Confinement Potential

An external quark–antiquark pair connected by an

        
n=1n=1

      

flux tube experiences:
math
V(R) = T_1,R,

realizing linear confinement. (Lattice FTM simulations: LATT_FTM_CONF_RESULTS.zip, comparison with EXP_CONF data)

Intrinsic U(1)/ℤ₆ from Spinor Index Quantization on Solitons

We derive the U(1)ₒₜ/ℤ₆ quotient intrinsically from the Dirac index theorems on soliton backgrounds,taking into account spinor quantization conditions, without appealing to SM content. (See Foundational Paper: FTM_GAUGE_ORIGINS_■■■■.pdf by ■■ ■■■■■■■, also reviewed in FTM_THEORY_SEMINAR_■■■■■■■■■■■■_NOTES.pdf)

Spinor Dirac Index on

        
S2S2

      

with Monopole Flux
A 2D Dirac operator on

        
S2S2

      

coupled to a U(1) gauge field with monopole charge

        
nn

      

has index

        

      


provided the spin structure is consistent. For a spinor of charge

        
qq

      

, the effective flux is

        
qnqn

      

, and the index theorem requires

        
q n∈Z.
qn∈Z.

      


However, the existence of well-defined spinor bundles on

        
S2S2

      

forces the total second Stiefel–Whitney class to vanish, which means half-integer

        
qq

      

are allowed so long as

        
2qn∈Z2qn∈Z

      

. Thus intrinsically for spinor zero-modes on

        
S2S2

      

:

    Monopole number

            
    n2=1n2​=1

          

    ⇒

            
    2q⋅1∈Z2q⋅1∈Z

          

    ⇒

            
    2Y∈Z2Y∈Z

          

    .

Spinor Dirac Index on

        
CP2CP2

      

On

        
CP2CP2

      

, a spin

        
cc

      

Dirac operator coupled to a U(1) bundle of first Chern class

        
n3=3n3​=3

      

has index

        

      

\mathrm{Index}(\slashed D_{CP^2}) = \tfrac{1}{2}(n_3+2)(n_3+1) = 10,
counting net chiral zero-modes. The quantization condition for a spin

        
cc

      

charge

        
qq

      

is

        
q n3∈12Z,
qn3​∈21​Z,

      


but requiring the full integer index picks out

        
q n3∈Zqn3​∈Z

      

. Thus for

        
n3=3n3​=3

      

:

            
    3Y∈Z3Y∈Z

          

    .
    (Topological analysis methods, Chern class calculation in CHERN_CALC.m)

Combined Condition ⇒

        
6Y∈Z6Y∈Z

      




Together they imply

        
Y∈Z∩12Z∩13Z=16Z.
Y∈Z∩21​Z∩31​Z=61​Z.

      


This integer lattice is the root of the

        
Z6Z6​

      

quotient: the minimal electric charge quantum is

        
1/61/6

      

.

Physical Gauge Group

Because the smallest allowed

        
YY

      

is

        
1/61/6

      

, any U(1)ₒₜ rotation by

        
e2πi/6e2πi/6

      

acts trivially on all spinor zero-modes.Combining with the centers of SU(2) and SU(3) yields the normal subgroup isomorphic to

        
Z6Z6​

      

. Hence

        
(SU(3)c×SU(2)L×U(1)BI)/Z6
(SU(3)c​×SU(2)L​×U(1)BI​)/Z6​

      


is the intrinsic gauge group of the Φ-FTM framework, derived purely from spin

        
cc

      

quantization and soliton topology. (Group theory analysis report: FTM_GROUP_STRUCT-E02.tex, results verified by Code_SYMCHECK_0106.f90)

Unified Derivation of the SM Gauge Group, Hypercharge Quantization, and Chiral Spectrum from Φ‑FTM Solitons
1. Unified derivation of the Standard Model (SM) gauge group

[G_{SM} = \frac{SU(3)_c \times SU(2)_L \times U(1)_Y}{\mathbb Z_6},]
the fundamental hypercharge quantization
[Y \in \tfrac{1}{6}\mathbb Z,]
and the chiral fermion spectrum (three generations) entirely from the topological properties of Φ‑field FTM solitons. (Summary paper draft: FTM_SM_UNIFIED, presented at Internal Symposium ■■■■■■■■■■ ■■■■■■■■■)
2. Emergent Internal Manifolds & Non‑Abelian Gauge Symmetries
2.1 SU(2)_L from

        
M=S2M=S2

      

    A class of Φ‑solitons (“weak‑type”, winding‑1) has an orientational moduli space

            
    Mweak≅S2Mweak​≅S2

          

    . (Moduli space geometry: MOD_GEOM_S2.nb, experimental probe via EXP_MOD_PROBE)

    (\mathrm{Isom}(S^2)=SO(3)). For spinors, the symmetry is lifted to

            
    SU(2)SU(2)

          

    , giving SU(2)_L.

    Gauging these isometries introduces weak gauge bosons

            
    WμaWμa​

          

    . Their dynamics arise from a non-linear sigma model on

            
    S2S2

          

    . (NLSM_S2_DYNAMICS_■■■■.tex, simulation package NLSM_SIM_S2_V1.2)

2.2 SU(3)_c from

        
M=CP2M=CP2

      

    Another Φ‑soliton class (“color‑type”, winding‑3) has

            
    Mstrong≅CP2Mstrong​≅CP2

          

    . (Moduli space geometry: MOD_GEOM_CP2_■■■■.nb, theoretical constraints from)

    (\mathrm{Isom}(CP^2)=SU(3)), gauged to produce the gluons

            
    GμAGμA​

          

    .

    The CP² sigma model, minimally coupled to these SU(3) fields, governs color dynamics. (NLSM_CP2_DYNAMICS-12-81.tex, simulation package NLSM_SIM_CP2_V1.0)

3. U(1)_Y Hypercharge from U(1)_BI & Topological Quantization
3.1 Spin^c Quantization on

        
S2S2

      

            
    c1(TS2)=2c1​(TS2)=2

          

    . Spin^c consistency ⇒

            
    2 qBI∈Z2qBI​∈Z

          

    .

3.2 Spin^c Quantization on

        
CP2CP2

      

            
    c1(TCP2)=3Hc1​(TCP2)=3H

          

    . Consistency ⇒

            
    3 qBI∈Z3qBI​∈Z

          

    .

3.3 Combined ⇒

        
qBI∈(1/6)ZqBI​∈(1/6)Z

      

    Solving

            
    2q,3q∈Z2q,3q∈Z

          

    ⇒

            
    qBI=m/6,  m∈ZqBI​=m/6,m∈Z

          

    .

    Identify SM hypercharge

            
    Y≡qBIY≡qBI​

          

    . Thus

            
    Y∈rac16ZY∈rac16Z

          

    .

4. Full SM Gauge Group:

        
(SU(3)c×SU(2)L×U(1)Y)/Z6(SU(3)c​×SU(2)L​×U(1)Y​)/Z6​

      

    Centers:

            
    Z(SU(3))≅Z3Z(SU(3))≅Z3​

          

    ,

            
    Z(SU(2))≅Z2Z(SU(2))≅Z2​

          

    ,

            
    U(1)YU(1)Y​

          

    has period 6 due to

            
    Y∈1/6ZY∈1/6Z

          

    .

    A combined center element of order 6 acts trivially on all SM multiplets.

    Divide by this

            
    Z6Z6​

          

    to get the physical gauge group.

    Further reading in analysis document.

5. Chiral Fermion Spectrum via Zero‑Modes on

        
MmodMmod​

      

5.1 6D Dirac Decomposition

    (\Psi(x,y)=\sum_n ψ_n(x)χ_n(y)). Internal zero‑modes satisfy (\slashed D_{int}χ_n=0). (Formalism in 6D_DIRAC_FTM.doc, spectral analysis in SPEC_ANAL_6D.log)

5.2 Zero‑Modes on

        
S2S2

      

    Index = 1 ⇒ one SU(2)_L doublet per flux. Choose

            
    Q=+1oY=+1/6Q=+1oY=+1/6

          

    for quark doublets,

            
    Q=−3→Y=−1/2Q=−3→Y=−1/2

          

    for leptons.

    Three soliton instances ⇒ 3 families of doublets. (Replication mechanism study: ■■■■■■■■■■■■■■■■■■■.pdf, experimental search_EXP_REP)

5.3 Zero‑Modes on

        
CP2CP2

      

    Index = 3 ⇒ three SU(3)_c triplets per flux. Assign

            
    Q=+4→Y=+2/3Q=+4→Y=+2/3

          

    (u_R),

            
    Q=−2→Y=−1/3Q=−2→Y=−1/3

          

    (d_R).

    Three color components built‑in; index=3 sets generation multiplicity.

5.4 Complete SM Chiral Content

            
    (3,2)+1/6,(1,2)−1/2;(3,1)+2/3,(3,1)−1/3,(1,1)−1(3,2)+1/6​,(1,2)−1/2​;(3,1)+2/3​,(3,1)−1/3​,(1,1)−1​

          

    , each three times.

    Automatically anomaly‑free for each generation.

Pseudo-Born–Infeld gravity action in Palatini form:

math
S = \int d^4x \Bigl[
rac{2}{\kappa}\Bigl(\sqrt{\det(g_{\mu\nu} + \kappa R_{\mu\nu})} - \sqrt{\det g}\Bigr) - \sqrt{|g|} ,V(\Phi) + \mathcal{L}\Phi + \mathcal{L}{BI}(F,b(\Phi))\Bigr],

            
    RμνRμν​

          

    treated independently (Palatini).

    (\kappa=8\pi G).
    (Gravitational model details in FTM_GRAV_PALATINI.tex, cross-referenced with FTM_COSMO_GRAV_PARAM_■■■■.dat)

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■



Field Equations

Varying w.r.t. the metric yields:

math
\sqrt{\det(g+\kappa R)},(g+\kappa R)^{-1(\mu\nu)} - \sqrt{|g|},g^{\mu\nu} = \frac{\kappa}{2}\sqrt{|g|},T^{\mu\nu}_{\rm total}.

    Algebraic relation for

            
    RμνRμν​

          

    .

    Second-order in

            
    gg

          

    .
    (Derivations in GRAV_FIELD_EQNS.nb and checked against PalatiniFormalismReview.pdf)

Singularity Resolution

    Cosmological bounce: Modified Friedmann equation
    math
    \frac{\sqrt{1 + \kappa\rho/2} - 1}{\kappa/2} = H^2
    saturates at

            
    H2≈1/κH2≈1/κ

          

    . (Cosmological simulation data: FTM_COS_BOUNCE_SIM.h5, preliminary match with EXP_EUP)

    Black holes: Central curvature bounded by

            
    1/κ1/κ

          

    , no singularity. (BH metric solutions: FTM_BH_METRIC.dat, comparison with GR solutions in GR_COMP.txt)

4. UV Behavior & Ghost Freedom

    Expand for (\kappa R\ll1):
    math
    \sqrt{\det(g + \kappa R)} \approx \sqrt{|g|}\Bigl[1 + \frac{\kappa}{2}R - \frac{\kappa^2}{4}(R_{\mu\nu}R^{\mu\nu}-\frac{1}{2}R^2) +\dots\Bigr].

    No higher-derivative ghosts; curvature invariants bounded. (Perturbative analysis: FTM_GRAV_PERTURB.pdf, stability checks in STAB_GRAV_FTM_1.log)

5. Φ-Dependent Planck Scale

We tie the BI parameter to Φ:

math
\kappa(\Phi) = \kappa_0 \frac{b_0^2}{b(\Phi)^2},

    High-Φ regions → smaller effective Planck mass → stabilized solitons.(Also Experimental Proposal: EXP_PHI_PLANCK.pdf, theoretical motivation in PHI_PLANCK_THEORY.doc)

Cosmological Constant Mechanism

This notebook formalizes the “Cosmic Surplus” mechanism and proves a no-fine-tuning theorem for the cosmological constant. (Ref: COSMO_CONST_FTM_■■■■■■■■■■■■.pdf by ■■■ ■■■■■■■■■■ and ■■■ ■■■■)

Cosmic Surplus from Φ Condensation (See also ■■■■■■■■■■■■■■■■)

Potential:
math
V(\Phi) = -\tfrac12\mu^2\Phi^2 + \tfrac14\lambda\Phi^4,\quad \mu^2>0.

Vacua: (\Phi=0) (false) and (\Phi=v=\sqrt{\mu^2/\lambda}) (true) with
math
V(v) = -\frac{\mu^4}{4\lambda},\quad
\rho_{\rm surplus}=V(0)-V(v)= \frac{\mu^4}{4\lambda}.

Dynamical Relaxation & Residual Vacuum Energy

In FLRW:
math
\ddot\Phi + 3H\dot\Phi + V'(\Phi)=0,\quad H^2=
\frac{1}{3M_{\rm Pl}^2}(\tfrac12\dot\Phi^2+V(\Phi)).

Linearizing near

        
vv

      

:
math
\delta\Phi = \Phi-v,\quad \delta\ddot\Phi + 3H\delta\dot\Phi + m_\Phi^2\delta\Phi=0,\quad m_\Phi^2=2\mu^2.

Exponential damping ⇒ (\Phi \to v), leaving (
\rho_\Lambda=V(v)=-\mu^4/(4\lambda)). (Numerical FLRW evolution: FLRW_PHI_DYN.out)

Regardless of initial (\Phi(t_i),\dot\Phi(t_i)), late-time (\rho_\Lambda=V(v)) up to

        
e−Γte−Γt

      

corrections.

Hubble friction ensures

        
3H≥mΦ3H≥mΦ​

      

during relaxation.
Solutions decay as

        
e−Γt,  Γ≥mΦ/2e−Γt,Γ≥mΦ​/2

      

.
Residual vacuum energy (\approx V(v) + O(e^{-2\Gamma t})) ⇒ no large cancellations needed.

Choosing (\mu\sim10^{-3}\text{eV}, \lambda\sim10^{-2}) gives (\rho_\Lambda\sim(2\times10^{-3}\text{eV})^4). (Parameter fit in COSMO_PARAM_FIT.ini, sensitivity analysis SENS_ANAL_LAMBDA.txt)

Postulates and Results
Fundamental Excitations

Every localized excitation is a toroidal soliton (“FTM”) carrying an integer winding
math
𝑛 ∈ 𝑍.
(Postulate FTM-P1, see FTM_AXIOMS_■■■■.doc)

Governing Potential

math
𝑉 ( Φ ) = − 1/2 |𝑀|^2 |Φ|^2 + 1/4 Λ |Φ|^4 , 𝑀^2 < 0 , Λ > 0
Implies a tachyonic drive to condense and a quartic stabilizer to shape finite cores. (Potential parameters from GlobalFit.results)

Existence & Uniqueness

On the compactified domain
math
𝑥 ∈ [ 0 , 1 ]
with toroidal boundary conditions, the elliptic PDE
math
∇^2 Φ = 𝑉 ′ ( Φ )
admits exactly one smooth, finite-energy solution per winding
math
𝑛.
Asymptotic matching of near-core and far-field expansions guarantees a single global profile. (Ref: FTM_MATH_FOUNDATIONS.pdf, Chapter 3, also Numerical Verification NV_SOL_■■■■■■■■■■■.log)

Further working 
FTM_11-06-2017_Notebook_Secondary

1110101010100000011101000111011011010101011011101001001101000011100100010101111011111100010001011011010011111001110011110011010000101010000111001110011010000111101011010110001100001100100000111010101011100011001100011101111100010001000001000000110110000100111000111011011001111111001011011100001010000100010010000000101100101100101001011011101010011011111011001110011001110101000101010001001001101001110101011110000011011110011111000000001000100101100111001100010110011011001101010011101001011101010101001011110011100001111001100110111100000000110101001100000011011111011100000001110101110110100001001010001010010011011110111101101001010011000101010010010011101110110000000110010000011111001100011001110110100101000000100011011100010001101010100111110111000111110001001001001001111110001110010010101010101000100110110100000111010110010001101100001101100001111110100010011101010011000001110010100111101101101101001100011010010101110101000011101001111111001111000000100010101011010010011110001110000001111101010001111001101001000100011011001011000010111100010010111000101010011011111100111101010100100100100011110110011100010001011100101000110011111010110010010000011001000010010101001110100001111001011110101111101011000001011000010100001010111010010110001011100001000100101010110100101111101101001100000101001111011000100000100011101000010101001011111100000110101111111101000110110110101000000011001011000000000101011010110001111100111000001100111100001111011000100111001010101000010111001000001111011101101001000100111000100011111101001011100000000101000010000011011011110011111111100000110100100111001111101001100001000001010100110011001011000000101001010110110100101110111110001000001001001111000110010011111110110010